

UNIVERSITY OF MINNESOTA

School of Public Health

Introduction

Different definitions of asbestos fibers have been proposed as most relevant to respiratory health end-points such as mesothelioma and lung cancer. We demonstrate a methodology to convert personal exposures to asbestos fibers using NIOSH 7400/7402 methods into exposures based on different ranges of fiber length and width.

Methods

Method to Convert Fiber Counts Asbestos and Non-asbestos Based on NIOSH 7400/7402 into Counts Based on Other Fiber Definitions

Table 1. Number of area & personal asbestos fiber samples per mine								
Zone *	Mine	SEGs	Workers	Fiber samples /worker	Personal sample	Area sample		
Eastern	Northshore	22	56	6	332	110		
Western	Keetac	21	34	6	220	105		
	Minntac	24	46	6	325	120		
	ArcelarMittal	22	22	6	159	110		
	Hibbtac **	22	34	6	239	110		
	Utac ^{**}	27	38	6	285	135		
	Total		230		1560	690		

Amphiboles which are regulated as asbestos are prevalent in eastern zone while phyllosilicates which are regulated as non-asbestos are prevalent in western zone.

** Sampling analysis is in progress.

Conversion factor $_{ijzy} = \frac{\Gamma_{ijzy}}{FNIOSH_{int}}$

- Conversion factor _{iizv} = Each fiber definition to NIOSH conversion factor for SEG_i, fiber diameter category_i, length category_z, and zone_v
- F_{iizv} = Proportion of all PCM fibers that are equivalent to TEM fibers in SEG_i and zone_v and that fall into fiber diameter category_i and length category_z by each fiber definition
- FNIOSH_{iv} = Proportion of all PCM fibers that are equivalent to TEM fibers that are counted using the NIOSH definition for SEG_i and zone_v

Results

Results show that the conversion factors (CF) varied by the geologically different eastern (CF=0.43-5.21, p < 0.05) and western (CF=0.13-1.74, p < 0.05) zones of the Iron Range. Using the variance components of exposure, we were able to calculate the contrast between the 27 similar exposure groups (SEGs) into which the workers in the taconite industry were classified. A high contrast (E) in fiber exposures was observed between the SEGs based on all fiber definitions (E=0.84-0.94).

Jooyeon Hwang, Gurumurthy Ramachandran, Peter C. Raynor, Bruce H. Alexander, and Jeffrey H. Mandel Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota.

Table 2. Conversion factor from the regression model (SAS 9.2)							
Authors	Ast	pestos	Non-asbestos				
	Eastern	Western	Eastern	Western			
Suzuki	5.21	1.74(0.27) *	0.43	0.13			
Stanton	NA	NA	1.06	1.01			
Chatfield	0.45	NA	0.98	1.01			
Lippmann	NA	NA	1.07	1.01			
Pott	1.58	0.94	0.91	0.97			
Stayner	NA	NA	1.07	1.01			
* () is the intersect and all conversion fortows are based on $n < 0.5$							

() is the intercept and all conversion factors are based on p < 0.5Both slope and intercept were zero by Quinn asbestos fiber definition.

Table 3. Different asbestos fiber definitions

Authors	Year	Width	Length	Aspect ratio	Analysis methods
Suzuki et al.	2005	≤0.25	≤5	NA	Electron microscopy
Stanton et al.	1981	≤0.25	>8	NA	Electron, light
Chatfield	2007	0.04< W <	NA	20< AR<	TEM
		1.5		1000	
Quinn et al.	2000	<6	>5	≥3	SEM, TEM
Lippmann [*]	1988	<0.1	>5	NA	NA
Pott et al.	1974	<1	>3	>5	NA
NIOSH A rule	1994	NA	>5	≥3	PCM
Stayner et al.	2008	<0.25	10 <l<20< td=""><td>NA</td><td>PCM, TEM</td></l<20<>	NA	PCM, TEM

*This fiber dimension is indices of mesothelioma

$$\epsilon = \frac{S_{BG}^{2}}{S_{BG}^{2} + S_{WG}^{2}} \qquad \pi = \frac{1}{\sqrt{S_{WG}^{2}/k + S_{WJ}^{2}/kn}}$$

$$\int S^2_{WG}/k + S^2_{WJ}/k$$

ptions:
$$\alpha_i \sim N(0, \sigma_{BG}^2), \beta_{ij} \sim N(0, \sigma_{WG}^2), \epsilon_{ijk} \sim (0, \sigma_{WW}^2)$$

 $\sigma_{BG}^2 \approx S_{BG}^2, \sigma_{WG}^2 \approx S_{WG}^2, \sigma_{WW}^2 \approx S_{WJ}^2$

$$\sqrt{S_{BG}^2}$$
 =GSD_{BG}, $\sqrt{S_{WG}^2}$ = GSD_{WG}, $\sqrt{S_{WW}^2}$ = GSD_{WW}

Hans Kromhout and Dick Heederik, Occupational epidemiology in the rubber industry: Implications of exposure variability, AJIM 27: 171-185

The original formation of SEGs was focused on exposure to asbestos fibers. Therefore, new SEGs based on the mean of non-asbestos fiber concentration in the western zone were created for non-asbestos fiber exposures. Three different sets of SEGs (n=27, 12, and 6) were created to compare the contrast (0.06, 0.09, 0.20, respectively)

Figure 2. Contrast by asbestos and non-asbestos fiber definitions for each zone

Conclusion

- Analysis demonstrated the importance of well-defined SEGs when inferences are made regarding exposures based on different fiber definitions.
- The conversion factor for asbestos fibers has a larger range of values in the eastern zone.
- The conversion factor for non-asbestos fibers has a larger range of values in the western zone.
- Contrasts between SEGs were higher in the eastern zone than in the western zone for asbestos and non-asbestos fibers.
- The high contrast between SEGs indicated that exposure misclassification will be minimized in epidemiology studies based on them.

Acknowledgements

State of Minnesota and Minnesota Department of Health

Contact Information

Jooyeon Hwang: 1260 Mayo MMC 807, 420 Delaware St. S.E. Minneapolis, MN, USA 55455, <u>hwang100@umn.edu</u>